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Stability Analysis for Systems with Impulse Effects
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In the present paper the authors establish new conditions for the uniform stability and the
uniform asymptotic stability of equilibria of systems with impulsive effects described
by systems of nonlinear, time-varying ordinary differential equations. For the case
when the corresponding systems without impulsive effects admit unstable properties,
the above results are used to establish conditions under which the uniform stability
even uniform asymptotic stability of equilibria of systems with impulsive effects can
be caused by impulsive perturbations .
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1. INTRODUCTION

There are numerous examples of evolutionary systems which at certain in-
stants in time are subjected to rapid changes. In the simulations of such processes it
is frequently convenient and valid to neglect the durations of the rapid changes and
to assume that the changes can be represented by state jumps. Examples of such
systems arise in mechanics (e.g., the behavior of a bouncing ball, the behavior of
a buffer subjected to shock effects, the behavior of clock mechanisms, the change
of velocity of a rocket at the time of separation of a stage, and so forth), in radio
engineering and communication systems (where the generation of impulses of
various forms is common), in biological systems (where, e.g., sudden population
changes due to external effects occur frequently), in control theory (e.g., impulse
control, robotics, etc.), and the like. Perhaps, the greatest current interest in such
systems arises in the area of impact mechanics (see, e.g., Bainov and Simeonov,
1989) and in the study of hybrid dynamical systems (see, e.g., Branicky, 1995;
Ye et al., 1995a,b, 1998). For additional specific examples, refer to (Benzaid
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and Sznaier, 1994; Brogliato, 1996; Liu, 1991; Michel and Wang, 1995) and (Ye
et al., 1998).

Appropriate mathematical models for processes of the type described above
are so-called systems with impulsive effects. Although analytical work for such
systems abounds in the literature (which is mostly based on energy arguments
and variational methods), relatively few Lyapunov stability results for such sys-
tems have been reported (see, e.g., Bainov and Simeonov, 1989; Gopalsamy and
Zhang, 1989; Liu, 1991 and Ye et al., 1995b; Ye et al., 1998a,b). In these results,
systems with impulse effects are frequently described by measure differential
equations (Pandit and Deo, 1982).

In the present paper we establish new stability results (comparison to those
existing results (Bainov and Simeonov, 1989; Ye et al., 1998a,b) for a large class
of systems with impulse effects described by systems of nonlinear, time-varying,
ordinary differential equations. Our results show that certain impulsive perturba-
tions may make a unstable system uniformly stable even uniformly asymptotically
stable.

2. NOTATION

Let (X, d) be a metric space where X denotes the underlying set and d denotes
the metric.

Definition 2.1. (Motion). Let A ⊂ X and let T ⊂ R+ = [0,∞). For any fixed
a ∈ A, t0 ∈ T , a mapping p(·, a, t0) : Ta,t0 → X is called a motion if p(t0, a, t0) =
a where Ta,t0 = [t0, t1) ∩ T , t1 > t0 and t1 is finite or infinite.

Definition 2.2. (Dynamical System). Let S be a family of motions, i.e.,

S ⊂ {p(·, a, t0) ∈ � : p(t0, a, t0) = a}

where

� = ∪(a,t0)∈A×T {Ta,t0 × {a} × {t0} → X}

and Ta,t0 × {a} × {t0} → X denotes a mapping from Ta,t0 × {a} × {t0} into X. The
four-tuple {T ,X,A, S} is called a dynamical system.

To characterize the qualitative behavior of dynamical systems, we will utilize
the concepts given below (refer, e.g., to Michel and Wang, 1995).

Definition 2.3. (Invariant Set). Let {T ,X,A, S} be a dynamical system. A set
M ⊂ A is said to be invariant with respect to system S if a ∈ M implies that
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p(t, a, t0) ∈ M for all t ∈ Ta,t0 , all t0 ∈ T and all p(·, a, t0) ∈ S. In particular,
when M = {x0} for x0 ∈ A, then x0 is said to be an equilibrium.

Definition 2.4. (Lyapunov Stability). Let {T ,X,A, S} be a dynamical system
and let M ⊂ A be an invariant set of S. We say that (S,M) is stable if for every
ε > 0 and t0 ∈ T there exists a δ = δ(ε, t0) > 0 such that d(p(t, a, t0),M) < ε for
all t ∈ Ta,t0 and for all p(·, a, t0) ∈ S, whenever d(a,M) < δ. We say that (S,M)
is uniformly stable if δ = δ(ε). Furthermore, if (S,M) is stable and if for any
t0 ∈ T there exists an η = η(t0) > 0 such that limt→∞ d(p(t, a, t0),M) = 0 for all
p(·, a, t0) ∈ S whenever d(a,M) < η, then (S,M) is called asymptotically stable.
We call (S,M) uniformly asymptotically stable if (S,M) is uniformly stable and
if there exists a δ > 0 and for every ε > 0 there exists a τ = τ (ε) > 0 such that
d(p(t, a, t0),M) < ε for all t ∈ {t ∈ Ta,t0 : d(t, t0) ≥ τ }, and all p(·, a, t0) ∈ S

whenever d(a,M) < δ.

3. STABILITY ANALYSIS FOR SYSTEMS WITH IMPULSE EFFECTS

The present section consists of two parts. In the first of these, we present the
description of the class of systems with impulse effects considered and we sum-
marize existing stability results (Bainov and Simeonov, 1989; Ye et al., 1998a) for
this class of systems. In the second part we establish new stability results. These
results show that uniform stability even uniform asymptotic stability of systems
with impulsive perturbations may be caused by certain impulsive perturbations
though the corresponding systems without impulsive effects admit unstable prop-
erties. Thus, we think that impulsive perturbations may give an efficient method
to deal with some plants which cannot endure frequent disturbance (i.e., control
input).

3.1. Systems with Impulse Effects

In the present paper we are concerned with finite-dimensional dynamical
systems determined by ordinary differential equations with impulse effects. Let
X = Rn(Rn is the real n -space) and let d be the metric determined by the Euclidean
vector norm || · ||, ||x|| = (xT x)1/2, where x ∈ Rn. For A ∈ Rn×n, let ||A|| denote
the norm of A induced by the Euclidean vector norm, i.e., ||A|| = [λmax(AT A)]1/2.

The class of systems with impulse effects under investigation can be described
by equations of the form {

dx
dt

= f (x, t), t 	= τk

�x = Ik(x), t = τk

(1)

where x ∈ X = Rn denotes the state and f ∈ C[Rn × R,Rn] satisfies a Lipschitz
condition with respect to x which guarantees the existence and uniqueness of
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solutions of systems (1) for given initial conditions [1]. ( C[U,W ] denotes the
set of all continuous functions from set U to set W , and Ck[U,W ] denotes
the set of all functions from U to W which have continuous derivatives up
to order k ). The set E = {τ1, τ2, . . . : τ1 < τ2 < · · ·} ⊂ R+ is an unbounded,
closed, discrete subset of R+ which denotes the set of times when jumps oc-
cur, and Ik : Rn → Rn denotes the incremental change of the state at the time
τk . It should be pointed out that in general E depends on a specific motion and
that for different motions the corresponding sets E are in general different. The
function φ : [t0,∞) → Rn is said to be a solution of the system with impulse
effects (1) if: 1) φ(t) is left continuous on [t0,∞) for some t0 ≥ 0; 2) φ(t) is
differentiable and (dφ/dt)(t) = f (φ(t), t) everywhere on (t0,∞) except on an
unbounded closed discrete subset E = {τ1, τ2, . . . : τ1 < τ2 < · · ·} ⊂ R+; and 3)
for any t = τk ∈ E, φ(t+) = lims→t,s>t φ(s) = φ(t) + Ik(φ(t)). We will use this
notation throughout this paper, i.e., for any g : U ⊂ R → Rn, the right limit of g

at t ∈ U is denoted by g(t+), i.e., g(t+) = lims→t,s>t g(s).
If for system (1), we assume further that f (0, t) = 0 for all t ∈ R+, and

Ik(0) = 0 for all k ∈ N = {1, 2, . . .}, then it is clear that x = 0 is an equilibrium.
For this equilibrium, the following results have been established in [1, Th. 13.1
and 13.2] and [11, Th. 3.1], respectively.

Proposition 3.1. (Bainov and Simeonov, 1989) Assume that for system (1)
satisfying f (0, t) = 0 and Ik(0) = 0 for all t ∈ R+ and k ∈ N, there exists a
V : X × R+ → R+ and φ1, φ2 ∈ K such that

φ1(||x||) ≤ V (x, t) ≤ φ2(||x||) (2)

for all (x, t) ∈ X × R+. [A function φ ∈ C([0, r1], R+) (respectively, φ ∈
C(R+, R+) ) belongs to class K (i.e., φ ∈ K ), if φ(0) = 0 and if φ is strictly
increasing on [0, r1] (respectively, on R+).]

1) If for any solution x(t) of (1) which is defined on [t0,∞), it is true that
V (x(t), t) is left continuous on [t0,∞), and is differentiable everywhere on (t0,∞)
except on the set E = {τ1, τ2, . . .}, where E is the set of the times when jumps
occur for x(t), and if it is also true that dV (x(t), t)/dt ≤ 0 for t 	= τk , and

V (x(t+), t+) ≤ V (x(t), t) for t = τk (3)

for all τk ∈ E, then the equilibrium x = 0 of system (1) is uniformly stable.
2) If in addition, we assume that there exists a φ3 ∈ K such that

dV (x(t), t)

dt
≤ −φ3(||x(t)||), t 	= τk (4)

then the equilibrium x = 0 of system (1) is uniformly asymptotically stable.
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Proposition 3.2. (Ye et al., 1998a) Assume that for system (1) f (0, t) = 0 and
Ik(0) = 0 for all t ∈ R+ and k ∈ N, that there exists an h ∈ C(R+, R+) such that
h(0) = 0, a V : X × R+ → R+, and φ1, φ2 ∈ K such that (2) is satisfied.

1) Assume that for any solution x(t) of (1) which is defined on
[t0,∞), V (x(t), t) is left continuous on [t0,∞), and is differentiable everywhere
on (t0,∞) except on the set E = {τ1, τ2, . . .} where E is the set of times when
jumps occur for x(t), and that V (x(τ+

n ), τ+
n ) is nonincreasing for n = 0, 1, . . .

where τ0 = t0, I0 = 0. Furthermore, assume that

V (x(t), t) ≤ h(V (x(τ+
n ), τ+

n )) (5)

is true for all t ∈ (τn, τn+1] and n ∈ N. Then the equilibrium x = 0 of system (1)
is uniformly stable.
2) If in addition to 1) we assume that there exists a φ3 ∈ K such that

DV (x(τ+
n ), τ+

n ) ≤ −φ3(||x(τ+
n )||) (6)

is true for all n ∈ N, where

DV (x(τ+
n ), τ+

n ) = 1

τn+1 − τn

[V (x(τ+
n+1), τ+

n+1) − V (x(τ+
n ), τ+

n )], (7)

then the equilibrium x = 0 of system (1) is uniformly asymptotically stable.

The above proposition 3.1 provides a sufficient condition for the (asymptotic)
stability of the equilibrium x = 0 of system (1). In Ye et al. (1998a), the authors
pointed out that one critical assumption in proposition 3.1 is that the impulse effects
occur at fixed instants of time, i.e., in (1) the set E = {τ1, τ2, . . .} is independent of
the different solutions. This assumption may be unrealistic, since in applications it
is often the case that the impulse effects occur when a given motion reaches some
threshold condition. While in proposition 3.2, the impulse effects are considered
which may occur at mobile instants of time, i.e., in (1) the set E = {τ1, τ2, . . .}
is dependent of the different solutions. On the other hand, we point out that
both proposition 3.1 and proposition 3.2 only show the persistence of stability
of system (1) under certain impulsive perturbations because the corresponding
system without impulse perturbations admit the same stability properties. This
observation is clear from condition (4) or (7) and Lyapunov stability theory for
differential systems without impulses.

3.2. New Stability Results

Theorem 3.1. Assume that for system (1) f (0, t) = 0 and Ik(0) = 0 for all
t ∈ R+ and k ∈ N, that there exists an h ∈ C(R+, R+), nondecreasing, a ψ ∈

1, a V : S(ρ) × R+ → R+, and φ1, φ2 ∈ K such that (2) holds for all (x, t) ∈
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S(ρ) × R+, where S(ρ) = {x ∈ Rn : ||x|| < ρ},
1 = {ψ ∈ C(R+, R+): strictly
increasing, ψ(0) = 0, ψ(s) < s for s > 0}.

1) Assume that for any solution x(t) of (1) which is defined on
[t0,∞), V (x(t), t) is left continuous on [t0,∞), and is differentiable everywhere
on (t0,∞) except on the set E = {τ1, τ2, . . .} where E is the set of times when
jumps occur for x(t), and that there exists ρ0 > 0 such that x ∈ S(ρ0) implies that
x + In(x) ∈ S(ρ) and

V (x(τ+
n ), τ+

n ) ≤ ψ(V (x(τn), τn)) (8)

for n = 0, 1, . . ., where τ0 = t0, I0 = 0. Furthermore, assume that (5) holds for all
t ∈ (τn, τn+1] and n = 0, 1, . . ., and that there exists γ > 0 such that

ψ−1(a) > h(a) for ∀a ∈ (0, γ ), (9)

where ψ−1 is the inverse of the function ψ . Then the equilibrium x = 0 of system
(1) is uniformly stable.

2) If in addition to the conditions in 1) (without conditions (5) and (9)) we
assume that there exist a λ ∈ C(R+, R+), a H ∈ C(R+, R+) such that H ◦ φ−1

1 ∈

2 and

dV (x(t), t)

dt
≤ λ(t)H (||x(t)||), t 	= τn (10)

is true for all n ∈ N, where 
2 = {ϕ ∈ C(R+, R+) : ϕ(0) = 0, ϕ(s) > 0 for s > 0
and ϕ is nondecreasing}. Furthermore, assume that there exist constants β ≥ α > 0
and A > 0 such that α ≤ τn − τn−1 ≤ β and∫ µ

ψ(µ)

du

H ◦ φ−1
1 (u)

−
∫ τn

τn−1

λ(s) ds ≥ A (11)

are true for all n ∈ N and µ ∈ (0,∞). Then the equilibrium x = 0 of system (1)
is uniformly asymptotically stable.

Proof:
1) We will prove that the equilibrium x = 0 is uniformly stable by definition,

i.e., we will show that for any ε ∈ (0, ρ0], we can always find a δ = δ(ε) > 0 such
that for all t0, ||x(t)|| < ε for t ≥ t0 whenever ||x(t0)|| < δ. To this end, we first
let δ = δ(ε) > 0 be such that φ2(δ) < γ and ψ−1(φ2(δ)) < φ1(ε).

For any t0(= τ0), the condition ||x(t0)|| < δ implies that

V (x(t0), t0) ≤ φ2(||x(t0)||) < φ2(δ).

We claim that

V (x(t), t) ≤ ψ−1(φ2(δ)), τ0 < t ≤ τ1. (12)
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Otherwise, there must exist a t̄ ∈ (τ0, τ1] such that

V (x(t̄), t̄) > ψ−1(φ2(δ)) > φ2(δ) > V (x(τ0), τ0). (13)

In view of the continuity of V (x(t), t) on [τ0, τ1], we see that there exists t̂ ∈ (τ0, t̄)
such that

V (x(t̂), t̂) = ψ−1(φ2(δ)). (14)

Thus, we have

ψ−1(φ2(δ)) = V (x(t̂), t̂) ≤ h(V (x(τ0), τ0)) ≤ h(φ2(δ)).

This contradicts (9) and so (12) holds. From (8) and (12) we have

V (x(τ+
1 ), τ+

1 ) ≤ ψ(V (x(τ1), τ1)) ≤ ψ(ψ−1(φ2(δ))) = φ2(δ).

Similarly, we can prove that

V (x(t), t) ≤ ψ−1(φ2(δ)), τ1 < t ≤ τ2,

V (x(τ+
2 ), τ+

2 ) ≤ φ2(δ).

By the induction, it is not difficult to prove that

V (x(t), t) ≤ ψ−1(φ2(δ)), τn < t ≤ τn+1, n = 0, 1, . . . .

Therefore, we can conclude that for all t ≥ t0

||x(t)|| ≤ φ−1
1 (V (x(t), t)) ≤ φ−1

1 (ψ−1(φ2(δ)))) < φ−1
1 (φ1(ε)) = ε.

We have proved that the equilibrium x = 0 of system (1) is uniformly stable.
2) We will first prove that the equilibrium x = 0 is uniformly stable by

definition. Observe that we now must use the conditions in 2) (without conditions
(5) and (9)). However, along the proof in 1), we still must prove that (12) holds.
If (12) does not hold, then we have again that (13) and (14) hold. By (13) there
exists a ť ∈ (τ0, t̂) such that

V (x(ť), ť) = φ2(δ). (15)

Now (10) implies that for t 	= τn

dV (x(t), t)

dt
≤ λ(t)H (φ−1

1 (V (x(t), t))) = λ(t)G(V (x(t), t)), (16)

where G = H ◦ φ−1
1 . Integrating (16) over (ť , t̂) yields∫ V (x(t̂),t̂)

V (x(ť),ť)

du

G(u)
≤

∫ t̂

ť

λ(s) ds ≤
∫ τ1

τ0

λ(s) ds. (17)
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On the other hand, let µ = ψ−1(φ2(δ)) in (11). We have by (14) and (15)∫ V (x(t̂),t̂)

V (x(ť),ť)

du

G(u)
=

∫ ψ−1(φ2(δ))

φ2(δ)

du

G(u)

≥
∫ τ1

τ0

λ(s) ds + A >

∫ V (x(t̂),t̂)

V (x(ť),ť)

du

G(u)
.

This contradiction shows that (12) is true and so

V (x(τ+
1 ), τ+

1 ) ≤ ψ(V (x(τ1), τ1)) ≤ φ2(δ).

We now show that

V (x(t), t) ≤ ψ−1(φ2(δ)), τ1 < t ≤ τ2. (18)

If (18) does not holds, then there exists a t̄ ∈ (τ1, τ2] such that

V (x(t̄), t̄) > ψ−1(φ2(δ)) > φ2(δ) ≥ V (x(τ+
1 ), τ+

1 ).

By the continuity of V (x(t), t) on (τ1, τ2], we see that there exists t̂ ∈ (τ1, t̄] such
that

V (x(t̂), t̂) = ψ−1(φ2(δ)).

Also, there exists a ť ∈ [τ1, t̂) such that

V (x(ť+), ť+) = φ2(δ),

where V (x(ť+), ť+) = V (x(ť), ť) whenever ť 	= τ1. Now, from (16) we have∫ V (x(t̂),t̂)

V (x(ť+),ť+)

du

G(u)
≤

∫ t̂

ť

λ(s) ds ≤
∫ τ2

τ1

λ(s) ds.

On the other hand, let µ = ψ−1(φ2(δ)) in (11) we have∫ V (x(t̂),t̂)

V (x(ť+),ť+)

du

G(u)
=

∫ ψ−1(φ2(δ))

φ2(δ)

du

G(u)

≥
∫ τ2

τ1

λ(s) ds + A >

∫ V (x(t̂),t̂)

V (x(ť+),ť+)

du

G(u)
.

�

This is a contradiction and so (18) is true. Now by similar arguments to the
proof in 1) we can conclude that the equilibrium x = 0 of system (1) is uniformly
stable.

For ε = ρ0, we can choose a δ = δ(ρ0) > 0 such that ψ−1(φ2(δ)) ≤ φ1(ρ0),
and in view of the proof of uniform stability, we know that the condition ||x(t0)|| <
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δ implies that

V (x(t), t) ≤ ψ−1(φ2(δ)) and ||x(t)|| < ρ0, t ≥ t0.

Now, let any ε > 0(ε < ρ0) be given. We will find a T = T (ε) > 0 such that

||x(t)|| < ε, t ≥ t0 + T , (19)

which yields the uniform asymptotic stability of the equilibrium x = 0 of system
(1) by definition. To this end, we take the smallest positive integer N = N (ε) such
that

ψ−1(φ2(δ)) ≤ ψ(φ1(ε)) + NAG(ψ(φ1(ε))). (20)

Let χi = [τi−1, τi], i = 1, 2, . . ., where τ0 = t0. Since

V (x(τ+
k ), τ+

k ) ≤ ψ(V (x(τk), τk)) ≤ V (x(τk), τk), k ∈ N,

it follows that sup{V (x(t), t) : t ∈ χi} = V (x(ri), ri) for some ri ∈ χi . Set T =
Nβ. We will prove that (19) holds for this T . To this end, we first prove that if

V (x(ri), ri) ≤ ψ(φ1(ε)) for some i ∈ {1, 2, . . . , N}, (21)

then

V (x(t), t) ≤ φ1(ε), t ≥ τN . (22)

Indeed, from (21) we have

V (x(t), t) ≤ ψ(φ1(ε)) < φ1(ε), τi−1 ≤ t ≤ τi . (23)

We claim that

V (x(t), t) ≤ φ1(ε), τi < t ≤ τi+1. (24)

Otherwise, there must be a r̄ ∈ (τi, τi+1] such that

V (x(r̄), r̄) > φ1(ε) > ψ(φ1(ε)) ≥ V (x(τi), τi) ≥ V (x(τ+
i ), τ+

i ).

Thus, there exist r̂ ∈ (τi, r̄) and ř ∈ [τi, r̂) such that

V (x(r̂), r̂) = φ1(ε), V (x(ř+), ř+) = ψ(φ1(ε)).

Integrating (16) from ř to r̂ yields∫ V (x(r̂),r̂)

V (x(ř+),ř+)

du

G(u)
≤

∫ r̂

ř

λ(s) ds <

∫ τi+1

τi

λ(s) ds + A

≤
∫ φ1(ε)

ψ(φ1(ε))

du

G(u)
=

∫ V (x(r̂),r̂)

V (x(ř+),ř+)

du

G(u)
.

This is a contradiction and so (24) holds. From (24) and (8) we have

V (x(τ+
i+1), τ+

i+1) ≤ ψ(V (x(τi+1), τi+1)) ≤ ψ(φ1(ε)) < φ1(ε).
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Similarly, we can prove that

V (x(t), t) ≤ φ1(ε), τi+1 < t ≤ τi+2, V (x(τ+
i+2), τ+

i+2) ≤ ψ(φ1(ε)).

By the induction, it is easy to prove that (22) holds.
Next, we will show that (21) holds for some i ∈ {1, 2, . . . , N}. Assume that

V (x(ri), ri) > ψ(φ1(ε)) for all i = 1, 2, . . . , N . In the following proof, we will
derive a contradiction. To this end, we prove that

V (x(ri), ri) ≤ V (x(r0), r0) − iAG(ψ(φ1(ε))), i = 0, 1, . . . , N, (25)i

where V (x(r0), r0) = ψ−1(φ2(δ)). Clearly, (25)i holds for i = 0. We now assume
that (25)i holds for some i(0 < i < N). We will prove that (25)i+1 holds. We first
prove that

V (x(ri+1), ri+1) ≤ V (x(ri), ri). (26)

Indeed, since V (x(t), t) ≤ V (x(ri), ri) for τi−1 ≤ t ≤ τi , it follows that

V (x(τ+
i ), τ+

i ) ≤ ψ(V (x(τi), τi)) ≤ ψ(V (x(ri), ri)).

We claim that

V (x(t), t) ≤ V (x(ri), ri), τi < t ≤ τi+1. (27)

If (27) does not hold, then there exists a t̄ ∈ (τi, τi+1] such that

V (x(t̄), t̄) > V (x(ri), ri) > ψ(V (x(ri), ri)) ≥ ψ(V (x(τi), τi)) ≥ V (x(τ+
i ), τ+

i ).

Thus, there exist t̂ ∈ (τi, t̄) and ť ∈ [τi, t̂) such that

V (x(t̂), t̂) = V (x(ri), ri), V (x(ť+), ť+) = ψ(V (x(ri), ri)). (28)

Integrating (16) from ť to t̂ and using (28) we have∫ V (x(t̂),t̂)

V (x(ť+),ť+)

du

G(u)
≤

∫ t̂

ť

λ(s) ds <

∫ τi+1

τi

λ(s) ds + A

≤
∫ V (x(ri ),ri )

ψ(V (x(ri ),ri ))

du

G(u)
=

∫ V (x(t̂),t̂)

V (x(ť+),ť+)

du

G(u)
.

This is a contradiction and so (27) holds. By (27) and the definition of
V (x(ri+1), ri+1), we see that (26) is true. We consider two possible cases.

Case 1. ψ(φ1(ε)) < V (x(ri+1), ri+1) ≤ ψ(V (x(ri), ri)).
In this case, from ∫ ψ−1(V (x(ri+1),ri+1))

V (x(ri+1),ri+1)

du

G(u)
≥ A,
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we have

V (x(ri+1), ri+1) ≤ ψ−1(V (x(ri+1), ri+1)) − AG(ψ(φ1(ε)))

≤ V (x(ri), ri) − AG(ψ(φ1(ε)))

≤ V (x(r0, )r0) − (i + 1)AG(ψ(φ1(ε))),

which implies (25)i+1.
Case 2. ψ(V (x(ri), ri)) < V (x(ri+1), ri+1) ≤ V (x(ri), ri).
In this case, if ri+1 ∈ χi+1 − {τi}, from

V (x(τ+
i ), τ+

i ) ≤ ψ(V (x(τi), τi)) ≤ ψ(V (x(ri), ri)),

we see that there is a r̄ ∈ [τi, ri+1) such that

V (x(r̄+), r̄+) = ψ(V (x(ri), ri)). (29)

Integrating (16) from r̄ to ri+1 yields∫ V (x(ri+1),ri+1)

V (x(r̄+),r̄+)

du

G(u)
≤

∫ ri+1

r̄

λ(s) ds ≤
∫ τi+1

τi

λ(s) ds,

which, together with (29) and condition (8), implies that∫ V (x(ri+1),ri+1)

ψ(V (x(ri ),ri ))

du

G(u)
≤ −A +

∫ V (x(ri ),ri )

ψ(V (x(ri ),ri ))

du

G(u)
.

According, ∫ V (x(ri ),ri )

V (x(ri+1),ri+1)

du

G(u)
≥ A. (30)

It follows that

V (x(ri+1), ri+1) ≤ V (x(ri), ri) − AG(ψ(φ1(ε)))

≤ V (x(r0), r0) − (i + 1)AG(ψ(φ1(ε))),

which implies (25)i+1. If ri+1 = τi , then from

V (x(τ+
i−1), τ+

i−1) ≤ ψ(V (x(τi−1), τi−1)) ≤ ψ(V (x(ri), ri)),

we have ∫ V (x(ri+1),ri+1)

ψ(V (x(ri ),ri ))

du

G(u)
≤

∫ V (x(τi ),τi )

V (x(τ+
i−1),τ+

i−1)

du

G(u)
≤

∫ τi

τi−1

λ(s) ds

≤ −A +
∫ V (x(ri ),ri )

ψ(V (x(ri ),ri ))

du

G(u)
.

We have again that (30) holds. By combining the cases 1 and 2, we may conclude
that (25)i+1 holds. By the induction, we see that (25)i hold for all i = 0, 1, . . . , N .
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Therefore, by (20), we have

V (x(rN ), rN ) ≤ V (x(r0), r0) − NAG(ψ(φ1(ε)))

= ψ−1(φ2(δ)) − NAG(ψ(φ1(ε)))

≤ ψ(φ1(ε)).

This contradicts the assumption that V (x(ri), ri) > ψ(φ1(ε)) for all i =
1, 2, . . . , N . Thus, we have proved that there exists a i ∈ {1, 2, . . . , N} such that
(21) holds and so (22) holds as in the preceding proof. Since t0 + T = t0 + Nβ ≥
τN , it follows that

||x(t)|| ≤ φ−1
1 (V (x(t), t)) ≤ φ−1

1 (φ1(ε)) = ε

is true for all t ≥ t0 + T . This proves that x = 0 is uniformly asymptotically stable.

Remarks.
1) The conditions (3) and (4) in Proposition 3.1 imply that the Lyapunov

function V is required to be monotonically nonincreasing on [t0,∞). Thus, Propo-
sition 3.1 is a simple extendence of Lyapunov stability theorems to the system
with impulse effects (1). In 1) of Proposition 3.2, the above monotonity is relaxed
but V (x(τ+

n ), τ+
n ) is required to be monotonically nonincreasing for n = 0, 1, . . . .

Specifically, the function h in condition (5) is required to satisfy h(0) = 0. Clearly,
in Theorem 3.1, the conditions for uniform stability are partially different from
those given in Propositions 3.1 and 3.2.

2) It should be emphasized that in Proposition 3.1 (resp. Proposition 3.2) the
condition (4) (resp. (6)) for uniform asymptotic stability cannot yield new stability
properties which are caused by impulsive perturbations. In the following, by using
the new stability results in Theorem 3.1, we will give the application to show that
certain impulsive perturbations may make a unstable system uniformly stable even
uniformly asymptotically stable.

4. AN APPLICATION: IMPULSIVE CONTROL FOR STABILITY

Let a plant be a nonlinear system of the form

dx

dt
= Ax + f (x, t), y = Bx, (31)

where x ∈ Rn is state variable, A is an n × n constant matrix, y ∈ Rm is output,
and B is an m × n constant matrix. f ∈ C(Rn × R,Rn) is a nonlinear function.
The control instant is given by τk, k = 1, 2, . . .. Then the nonlinear impulsive
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control system is given by⎧⎪⎨
⎪⎩

dx
dt

= Ax + f (x, t)

y = Bx, t 	= τk,


x = Cy, t = τk, k = 1, 2, . . . ,

(32)

where C is an n × m constant matrix.

Remark. The dynamics of the impulsive control system in (32) is governed
by the ODE in (31) when t 	= τk . It is clear that the controlled system is a free
system whenever t 	= τk . In this sense, impulsive control is totally different from
continuous control where plants are continuously driven by inputs. Only at instant
τk, k = 1, 2, . . ., the state variable is changed from x(τ−

k ) to x(τ+
k ) = x(τ−

k ) +

x|t=τk

= x(τ−
k ) + Cy instantaneously. Then the impulsive control system can

be rewritten as ⎧⎪⎨
⎪⎩

dx
dt

= Ax + f (x, t), t 	= τk,


x = CBx, t = τk, k = 1, 2, . . . ,

x(t+0 ) = x0.

(33)

Theorem 4.1. Let the n × n matrix D be symmetric and positive definite, and
λi > 0(i = 1, 2) be the smallest and the largest eigenvalues of D, respectively.
Let P = DA + AT D, where AT is the transpose of A. Let λ3 be the largest eigen-
value of D−1P , and λ4 be the largest eigenvalue of D−1[I + (CB)T ]D(I + CB)
such that λ4 ∈ (0, 1), where I is the identity matrix. Assume that ||f (x, t)|| ≤
L(t)||x|| for (x, t) ∈ S(ρ) × [t0,∞), where S(ρ) = {x ∈ Rn : ||x|| < ρ}, and
L ∈ C([t0,∞), R+). Then the equilibrium x = 0 of system (33) is uniformly
asymptotically stable if there exist constants 0 < α ≤ β and γ > 1 such that
α ≤ τk − τk−1 ≤ β and∫ τk

τk−1

λ(s) ds + ln(γ λ4) ≤ 0, k = 1, 2, . . . , (34)

where τ0 = t0 and

λ(t) =
(

λ3 + 2L(t)

√
λ2

λ1

)
≥ 0.

Proof: We construct a Lyapunov function V (x, t) = V (x) = xT Dx. Then, for
any solution x = x(t) of (33), when t 	= τk , we have

dV (x)/dt = xT (AT D + DA)x + (f T (x, t)Dx + xT Df (x, t))

= xT Px + (f T (x, t)Dx + xT Df (x, t))
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≤
(

λ3 + 2L(t)

√
λ2

λ1

)
V (x) = λ(t)V (x).

�

It is clear that

λ1||x||2 ≤ V (x) ≤ λ2||x||2.
Thus, one can see that conditions (2) and (10) of Theorem 3.1 are satisfied. Set
ρ0 = ρ/||I + CB||. Then for x ∈ S(ρ0), we have

||x + Ik(x)|| = ||x + CBx|| ≤ ||I + CB||||x|| ≤ ρ.

When t = τk , we have

V (x + CBx) = (x + CBx)T D(x + CBx)

= xT (I + (CB)T )D(I + CB)x ≤ λ4V (x).

Thus, condition (8) of Theorem 3.1 is satisfied for ψ(s) = λ4s. It is clear that
condition (11) is satisfied for A = ln γ . Therefore, by Theorem 3.1, the equilibrium
x = 0 of (33) is uniformly asymptotically stable.

Remark. From Theorem 4.1, one can see that impulsive perturbations may make
a unstable system uniformly stable even uniformly asymptotically stable. Indeed,
consider the scalar differential system with impulse effects⎧⎪⎨

⎪⎩
dx
dt

= ax + x3, t 	= τk,


x = bx, t = τk, k = 1, 2, . . . ,

x(t+0 ) = x0,

where x ∈ R, a ∈ (0,∞), b ∈ R and t0 ≤ τ1 < τ2 < . . .. By theorem 4.1, it is
easy to see that the equilibrium x = 0 of the system is uniformly asymptotically
stable if there exist constants L > 0 and γ > 1 such that

2(a + L)(τk − τk−1) + ln(γ (1 + b)2) ≤ 0, k = 1, 2, . . . ,

where τ0 = t0. On the other hand, it is clear that the equilibrium x = 0 of the
equation (dx/dt) = ax + x3 is unstable.
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